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Abstract. The Marine Isotope Stage (MIS) 11 (424–374 ka)
was characterized by a protracted deglaciation and an un-
usually long climatic optimum. It remains unclear to what
degree the climate development during this interglacial re-
flects the unusually weak orbital forcing or greenhouse gas
trends. Previously, arguments about the duration and tim-
ing of the MIS11 climatic optimum and about the pace of
the deglacial warming were based on a small number of
key records, which appear to show regional differences. In
order to obtain a global signal of climate evolution during
MIS11, we compiled a database of 78 sea surface temper-
ature (SST) records from 57 sites spanning MIS11, aligned
these individually on the basis of benthic (N = 28) or plank-
tonic (N = 31) stable oxygen isotope curves to a common
time frame and subjected 48 of them to an empirical orthog-
onal function (EOF) analysis. The analysis revealed a high
commonality among all records, with the principal SST trend
explaining almost 49 % of the variability. This trend indi-
cates that on the global scale, the surface ocean underwent
rapid deglacial warming during Termination V, in pace with
carbon dioxide rise, followed by a broad SST optimum cen-
tered at∼ 410 kyr. The second EOF, which explained∼18 %
of the variability, revealed the existence of a different SST
trend, characterized by a delayed onset of the temperature op-
timum during MIS11 at∼ 398 kyr, followed by a prolonged
warm period lasting beyond 380 kyr. This trend is most con-
sistently manifested in the mid-latitude North Atlantic and
Mediterranean Sea and is here attributed to the strength of

the Atlantic meridional overturning circulation. A sensitivity
analysis indicates that these results are robust to record se-
lection and to age-model uncertainties of up to 3–6 kyr, but
more sensitive to SST seasonal attribution and SST uncer-
tainties> 1◦C. In order to validate the CCSM3 (Commu-
nity Climate System Model, version 3) predictive potential,
the annual and seasonal SST anomalies recorded in a total
of 74 proxy records were compared with runs for three time
slices representing orbital configuration extremes during the
peak interglacial of MIS11. The modeled SST anomalies are
characterized by a significantly lower variance compared to
the reconstructions. Nevertheless, significant correlations be-
tween proxy and model data are found in comparisons on the
seasonal basis, indicating that the model captures part of the
long-term variability induced by astronomical forcing, which
appears to have left a detectable signature in SST trends.

1 Introduction

Marine Isotope Stage (MIS) 11 (424–374 ka) (Lisiecki and
Raymo, 2005) stands out among the middle Pleistocene in-
terglacials by its unusually long climatic optimum and a sub-
dued orbital forcing due to low orbital eccentricity (Tzedakis
et al., 2009). The amplitude of orbital parameters during
MIS11 is similar to the Holocene, and MIS11 has been of-
ten considered an analogue to the present interglaciation
(Berger and Loutre, 1991; Loutre and Berger, 2003; EPICA
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community members, 2004). However, whereas the present
interglaciation has so far lasted through one single sum-
mer insolation maximum at 65◦N, the MIS11 interglacial
optimum spans two such insolation maxima. Further, the
deglaciation culminating in MIS11 climatic optimum (Ter-
mination V) was associated with an unusually weak orbital
forcing and a different phasing of precession and obliquity,
making orbital alignment with the Holocene difficult, and
driving a protracted deglacial sea-level rise during Termi-
nation V, twice as long as during Termination I (Lisiecki
and Raymo, 2005; Rohling et al., 2010; Tzedakis, 2010). In
contrast to the differences in orbital parameters, the green-
house gas concentrations in the atmosphere during MIS11
and the rate of their increase during Termination V were sim-
ilar when compared to the preindustrial Holocene (Petit et al.,
1999; Siegenthaler et al., 2005).

During MIS11, warm interglacial conditions lasted longer
than in any other mid- to late Pleistocene interglacials as for
instance reflected by the longer period of higher tempera-
tures over Antarctica (Jouzel et al., 2007) and the peak sea
level appearing to have been slightly higher than at present
(Raymo and Mitrovica, 2012). The presence of an extended
“climatic optimum”, lasting around 30 kyr, has been docu-
mented in sea surface temperature records across the world
ocean (McManus et al., 1999; Hodell et al., 2000; Kandi-
ano and Bauch, 2003; De Abreu et al., 2005; Dickson et al.,
2009; Stein et al., 2009; Voelker et al., 2010), in temperature
proxies from Antarctic ice cores (Petit et al., 1999; Jouzel et
al., 2007; Pol et al., 2011) and in terrestrial pollen records
(Tzedakis, 2010). Like the Holocene, the MIS11 climatic
optimum appears to have been a stable interglacial period
(Oppo et al., 1998; McManus et al., 1999), characterized by
low-amplitude millennial-scale climate variability (Oppo et
al., 1998, 2003; Healey and Thunell, 2004; Pol et al., 2011;
Vázquez Riveiros et al., 2013).

On the other hand, temperatures in the northern high lat-
itudes during MIS11 appear lower than in the Holocene
(Bauch et al., 2000; Helmke et al., 2003), and their temporal
development seems to deviate from the global trend (Kan-
diano et al., 2012). These differences have been linked to
changes in the strength of the Atlantic meridional overturn-
ing circulation, underlining the importance of the response
of oceanic circulation to global forcing during Termination
V and MIS11 (Dickson et al., 2009; Vázquez Riveiros et al.,
2013). Until now, the congruence of sea surface temperature
(SST) trends during MIS11 has never been assessed objec-
tively, on a global basis and with an explicit consideration
of dating uncertainty. Such an analysis is essential to deter-
mine the robustness and timing of MIS11 climatic optimum
and the relationship between MIS11 SST trends with global
forcing.

Here, we present a global compilation of sea surface tem-
perature (SST) records for MIS 11, aligned by oxygen iso-
tope stratigraphy, that cover a large proportion of the global
oceans in both hemispheres. The aim of this study is to an-

Transfer function
N. pachyderma
SST stack

Uk´
37

Fig. 1.Position of the sea surface temperature (SST) records used in
this study. The compilation contains SST records based on Mg / Ca,
Uk′

37, transfer functions (TFs) including an artificial neural network
(ANN), scaling of oxygen isotopes values inNeogloboquadrina
pachydermaand percentages ofN. pachyderma(see Sect. 2.1), and
one SST stack based on the mean of Mg / Ca,Uk′

37, and TEXH86 (Ta-
ble 1).

alyze temporal trends in the SST records and to investigate
their linkage to global and regional climate variability dur-
ing this period. Specifically, the following questions will be
addressed: (i) what are the roles of orbital and greenhouse
gas forcing in MIS11 climate variability, (ii) to what extent
is regional climate variability reflected in SST trends, and
(iii) how does tempo-spatial climate variability simulated by
a state-of-the-art climate model for orbital configuration ex-
tremes of MIS11 correspond to that found in proxy records?

2 Material and methods

2.1 Material

We compiled a total of 78 marine SST records from 57 sites,
covering a large geographical range (175◦ E–172◦ W and
57◦ N to 54◦ S), and water depths from 826 to 4620 m (Ta-
ble 1). Most records stem from cores drilled in the Atlantic
and Pacific oceans, but the database also includes records
from the Indian Ocean, the Southern Ocean, and the Mediter-
ranean Sea (Fig. 1). We have only chosen SST records for
which stable benthic or planktonic foraminiferal oxygen iso-
tope data are available with a sufficient temporal resolu-
tion to establish a robust stratigraphic framework for each
record (Sect. 2.2). Most data sets were derived from the Pan-
gaea (http://www.pangaea.de) and National Oceanic and At-
mospheric Administration (NOAA) (ftp://ftp.ncdc.noaa.gov)
websites. Data not available online were provided by the
principal investigators or extracted from published figures
through digital image processing.

The SST records are based on different proxies. Aware of
the significant differences in the part of the seasonal SST
cycle that is represented by each proxy, we have attributed
the individual SST records to seasons. Thus a total of seven
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records based on planktonic foraminiferal Mg / Ca in low to
mid-latitudes were attributed to annual SST (see Barker et
al., 2005), and all 25 alkenone (U k′

37) records were attributed
to annual SST (see Müller et al., 1998) (Fig. 3d). A total of
27 seasonal SST records are based on foraminiferal, radio-
larian and diatom assemblages using transfer functions in-
cluding the modern analog technique (MAT) (Prell, 1985),
the Imbrie–Kipp technique (IKT) (Imbrie and Kipp, 1971),
the revised analog method (RAM) (Waelbroeck et al., 1998),
and SIMMAX (Pflaumann et al., 1996), while one record
based on the artificial neural network approach (Malmgren
and Nordlund, 1997; Malmgren et al., 2001) was attributed to
annual SST (Fig. 3d). Among the individual studies, the cali-
bration data sets and the exact definitions of the seasons vary,
but all transfer functions have been calibrated to a represen-
tation of “surface” SST, and differences due to different cali-
bration data are unlikely to affect the shape of the SST trends.
Finally, one SST record was derived by subtracting the ben-
thic δ18O from theδ18O signal of the planktonic foraminifer
Neogloboquadrina pachyderma(McManus et al., 1999) and
another one using the relative abundance ofN. pachyderma
(sinistral) (Vázquez Riveiros et al., 2010). Both of these
records are from high-latitude settings and were considered
to represent the summer growth season, following the au-
thors of these studies. Furthermore, we included one stack
that is based on the mean SSTs calculated fromU k′

37, Mg / Ca,
and TexH86 measurements (Caley et al., 2011) following the
author’s statement that the stack gives more accurate SSTs
compared to the individual records, and considered that this
record represents annual SST. Thus, all SST records can be
taken at first approximation to represent a “surface” signa-
ture, which has been attributed seasonally as far as possible.

2.2 Chronostratigraphy

To allow a direct comparison of SST trends, all records were
tuned to the LR04 stack (Lisiecki and Raymo, 2005) on the
basis of benthic or planktonicδ18O. The tuning was car-
ried out for the period between 200 and 550 ka using the
AnalySeries software (Paillard et al., 1996) (Fig. 2a–c). The
longer tuning time interval enabled a better correlation be-
tween the LR04 stack and theδ18O data, because it includes
more than one glacial–interglacial cycle. For the majority
of the records, theδ18O data with their corresponding core
depths were tuned to the LR04 stack. Where both benthic
and planktonicδ18O data were available, the benthic records
were used for tuning with priority. Depending on the tem-
poral resolution of the records, between 6 and 18 tie points
were defined for the target time interval 300–500 ka (Ta-
ble 1, Fig. S3). This interval was selected because it cov-
ers the entire MIS11 and the major portion of the preceding
and following glacials, allowing multiple robust tie points to
be defined. For record MD03-2699, the tuning to the LR04
stack was problematic, and therefore we used the original age
model that is mostly based on the graphical correlation of the
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Fig. 2. Example for the age tuning of the benthicδ18O record of
ODP Site 1020 to the benthic LR 04 stack (Lisiecki and Raymo,
2005):(A) selection of age control points in theδ18O of ODP Site
1020 and the LR04 stack,(B) comparison of the tunedδ18O record
of ODP Site 1020 with the LR04 stack, and(C) nine benthic and
planktonic oxygen isotope records from the North Atlantic used in
this study tuned to the LR04 stack by the method as shown in pan-
els (A) and (B). The gray area indicates the MIS11 time interval
according to Lisiecki and Raymo (2005).

isotope record to ODP Site 980 (given in LR04 ages) (see
Voelker et al., 2010, for further explanations). For three sites
(MD96-2048, MD 96-2077 and ODP Site 1239), we used the
age models in the original publications as they were already
based on a graphical correlation of the isotope records to the
LR04 stack. For 14 of the compiled records that are included
in the LR04 stack, we also have identified a limited num-
ber of age control points depending on their resolution such
that the number and type of control points was comparable
to the other records and then used the age and depth assign-
ment of these points based on the original LR04 age model.
The age models of each core are being made available to-
gether with all data of the compilation via Pangaea. In ad-
dition, age–depth plots for all records used in this study are
shown in Fig. S3, highlighting the studied MIS11 interval.
The temporal resolution of all proxy records was calculated
for the 300–500 ka time interval (Fig. 3a, Table 1), and age
model quality was evaluated on the basis of the correlation
between the LR04 stack and the stable oxygen isotope curve
of each record, as implemented in the AnalySeries software
(Table 1).
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2.3 Analysis of SST trends

To extract principal SST trends in the global compilation,
the stratigraphically tuned SST records were subjected to an
empirical orthogonal function analysis (principal component
analysis applied on equally spaced time series). This method
projects a multivariate data set onto a subset of a few prin-
cipal components, whilst retaining as much information as
possible (Hannachi et al., 2007; Jolliffe, 2002; Hammer and
Harper, 2006). As the first step of the empirical orthogonal
function (EOF) analysis, the tuned SST time series were lin-
early interpolated to a temporal resolution of 1000 yr allow-
ing a comparison the SST trends reflected by the EOFs with
global climate trends across MIS11. All records were nor-
malized to unit variance, preventing the first EOFs from be-
ing dominated by variables with large variance. Of the total
of 57 sites, SST records from 48 sites (34 representing annual
and 14 representing caloric summer SST) covered the inter-
val of 370–430 ka and were included in the analysis (Table 1,

Fig. 3e). This interval was selected to allow the inclusion of
the most records, whilst covering the entire MIS11. The 11
records not included in the analysis either ended or started
within MIS11. Since we were only interested in the shape of
SST trends, we have merged records attributed to annual and
summer SST in one joint analysis. We believe this is justified
since the biggest difference is likely to be that of a system-
atic offset, rather than a difference in the shape of the trends.
Nevertheless, to assess to what degree this decision may have
affected the results, we have also carried out the analyses sep-
arately for annual and caloric summer SST.

In order to test the EOF sensitivity to age model uncer-
tainty, the analysis was repeated on data in which the age
control points of all records were randomly resampled with
an age uncertainty of 3, 5, and 6 kyr. The lowest value cor-
responds to the mean temporal resolution of the records (Ta-
ble 1), and values higher than 6 kyr were not tested as they
would equate to age uncertainties approaching the shortest
orbital cycle, implying a total failure of the orbital tuning
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procedure. All age models in this study are based on the age
assignment to a small number of distinct features in stable
isotope records, between which an interpolation takes place.
As a first approximation, we consider that each of the age
model control points is liable to the same uncertainty, and
that these uncertainties are symmetrical and independent of
each other. The randomized age model for each record was
then created by stepwise linear correlation between the re-
sampled control points. We have not carried out an auto-
correlated age uncertainty propagation between the control
points, but the algorithm we used detected and rejected all
trials where the resampling created chronological reversals
(such a situation may arise when age model control points
are closer than twice the age uncertainty of the resampling).

Next, in order to assess the robustness of the EOF pat-
tern to uncertainties in the SST values, the SST reconstruc-
tions were resampled under a simulated proxy uncertainty of
1, 2, and 4◦C. The lowest value corresponds to the typical
value of an SST proxy uncertainty due to calibration. Higher
values of SST uncertainty acknowledge the possibility that
the SST reconstructions may be misattributed seasonally be-
tween glacial and interglacial ocean conditions, reflecting,
for example, shifts in the production season of the proxy
carrier. Finally, we used a jackknifing approach to examine
the sensitivity of the EOFs to the number of records used
in the analysis. EOFs were re-calculated, with 1000 repli-
cations, after randomly excluding 5, 15, 25, and 35 records
during each replication. The EOF analysis was then carried
out with 1000 replicates considering various combinations
of age model uncertainty, SST proxy uncertainty and record
exclusion. All EOF calculations were carried out with an al-
gorithm written in MATLAB R2012a, which is available in
the Supplement (S5).

2.4 Model–data comparison of climate variability

A comparison of SST anomalies in the proxy data with cli-
mate model output was carried out for three time slices (394,
405, and 416 ka before present) during the peak MIS11 inter-
glacial when the influence of ice sheets on climate was sup-
posed to be small. The three time slices reflect different ex-
tremes of the orbital configurations during peak MIS11. The
394 and 416 ka time slices are characterized by minimum and
maximum obliquity (cf. Fig. 8a), respectively, while preces-
sion is almost identical. The 405 ka time slice coincides with
the LR04 oxygen isotopic minimum (Lisiecki and Raymo,
2005) and high northern summer insolation (cf. Fig. 8a). For
model–data comparison, arithmetic averages of all proxy val-
ues in each tuned record that fall into a 10 kyr interval cen-
tered on the respective model time slice were extracted from
the proxy records. In this way, we have made sure that age
model uncertainties in the proxy data were taken into ac-
count, whilst we acknowledge that the proxy time-slice data
are likely to have been smoothed. The time slice simulations
were performed with the National Centers for Atmospheric

Table 2.Greenhouse gas concentrations used in forcing the CCSM3
experiments (Siegenthaler et al., 2005; Schilt et al., 2010; Lourergue
et al., 2008). See also Fig. 8a.

Experiments CO2 (ppmv) CH4 (ppbv) N2O (ppbv)

394 ka BP 275 550 275
405 ka BP 280 660 285
416 ka BP 275 620 270

Research (NCAR) Community Climate System Model ver-
sion 3 (CCSM3), which is described in the following section.

CCSM3 is a state-of-the-art coupled climate model that
performs without flux corrections. The global model is com-
posed of four separate components representing atmosphere,
ocean, land, and sea ice (Collins et al., 2006). Here, we use
the low-resolution version of CCSM3, which is described in
detail by Yeager et al. (2006). In this version, the resolution
of the atmosphere is given by T31 (3.75◦ transform grid)
spectral truncation with 26 layers, while the ocean model
has a nominal horizontal resolution of 3◦ (like the sea-ice
component) with 25 vertical levels. The latitudinal resolu-
tion of the ocean grid is variable, with finer resolution around
the Equator (0.9◦). The land model is defined on the same
horizontal grid as the atmosphere and includes components
for biogeophysics, biogeochemistry, the hydrologic cycle, as
well as a dynamic global vegetation model. In order to im-
prove the simulation of vegetation cover, new parameteriza-
tions for canopy interception and soil evaporation have been
implemented into the land component (Oleson et al., 2008).

A pre-industrial control run was performed following the
protocol established by the Paleoclimate Modelling Inter-
comparison Project, Phase 2 (Braconnot et al., 2007; Otto-
Bliesner et al., 2006; Merkel et al., 2010). The control run
was integrated for 600 yr starting from present-day initial
conditions. For the selected time slices, appropriate orbital
parameters (Berger, 1978) and greenhouse gas concentra-
tions were prescribed, as given in Table 2, while all other
forcings (ice sheet configuration, ozone distribution, sulfate
aerosols, carbonaceous aerosols, solar constant) were kept at
pre-industrial levels. Starting from the last year of the (quasi-
)equilibrated pre-industrial control run, all simulations were
integrated for 400 yr so that the surface climatologies could
reach a statistical equilibrium. For each experiment, the mean
of the last 100 simulation years was used for analysis.

For a direct proxy–model comparison, we used only such
proxy SST records for which at least one value was avail-
able in each of the three time-slice intervals and calculated
the differences between the SST average for the three time
slices and the SST average of each time slice. In all cases, the
seasonal attribution has been preserved, allowing data–model
comparison on a seasonal basis. The comparison is synoptic
in that northern summer SST and southern winter SST are
analyzed together and vice versa. The eventually selected 74
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records from a total of 52 sites contain a total of 35 annual, 16
Northern Hemisphere summer, and 23 Northern Hemisphere
winter SST records (Fig. 3f, Table 1). Model data have been
extracted from the surface layer (0–20 m) field of the nearest
grid cell to each proxy record. For the data–model compari-
son, we calculated the proxy-based and modeled SST anoma-
lies of the Northern Hemisphere summer (July–September in
the model) and winter (January–March in the model) periods
and the annual SST anomalies relative to the mean SST of
the 390–420 ka time interval (the average of the 394, 405,
and 416 ka time slices in the model).

When testing for the correlation between SST anomalies
retrieved from proxy data and model calculations on a per-
season basis, part of the uncertainty is whether or not the
proxy data have been assigned to the correct season. In or-
der to test the validity of our assignments (compare also with
Sect. 2.1), we applied two randomization tests on the data set
showing the best correlation between proxy and model (in
this case 416 ka summer). Using all 52 records in that time
slice, we ran 10 000 permutations during which we correlated
summer anomaly data of the model with random season data
of the proxies. In a second randomization we introduced one
more degree of freedom by randomly choosing only 30 of
the 52 records available and correlating a randomly assigned
seasonal data set in the proxy data with the summer values
of the model data. To test the agreement between proxy and
modeled SST anomalies in a quantitative way, the correla-
tion between the proxy and modeled data for each season
and each time slice was calculated using the PAST software
package (Hammer et al., 2001). The type of correlation anal-
yses was adapted to the results of normality tests applied
on the data sets. Pearson’s product-moment correlation (r)
was used where the data were normally distributed (Shapiro–
Wilk test), while Spearman’s rank-order correlation (ρ) was
used when the data did not meet these requirements. In or-
der to assess not only the strength of the direct relationship
between the modeled and proxy-based anomalies, but also
to compare the direction of change in the data, Cohen’sκ

(Cohen, 1960) was used. Here, the temperature anomaly val-
ues were categorized into three nominal values, i.e., nega-
tive, positive, and no change relative to the mean SST of the
390–420 ka time interval (the average of the 394, 405, and
416 ka time slices in the model data). On the basis of those
categories, it was counted how often proxy data and model
predictions were in agreement with each other, and how of-
ten they contradicted and, if so, in which way they contra-
dicted (e.g., model is positive and proxy is negative, or model
has no change and proxy is positive). This resulted in contin-
gency tables with counts of all nine possible relations, from
which Cohen’sκ and correspondingp values (for H0= no
agreement between raters) were calculated in the SPSS soft-
ware package (version 20). Verbal assignments of quality of
agreement solely on the basis of theκ value are in accor-
dance with standard values given in the literature (e.g., Alt-
man, 1991). In order to quantify the differences in variability

in the proxy records and the climate model, the variance of
the SST anomalies in the proxy and model data sets was cal-
culated for each time slice and season, and compared using
an F test. Finally, we determined whether or not the proxy
pattern for each time slice can be considered as significant
deviation from no change. To this end, we calculated the con-
fidence interval for the mean proxy-based SST anomaly val-
ues using means of error propagation, where the confidence
interval is a function of both the number of records averaged
and the variance within those records.

3 Results

3.1 Age model quality

In order to quantify the quality of our age models, we exam-
ined both the correlation of theδ18O records with the LR04
stack (Lisiecki and Raymo, 2005) as well as their temporal
resolution. The majority of the benthic isotope records (44
records, i.e., 77 %) show a high correlation ofr ≥ 0.80 for
the entire tuning time interval between∼ 200 and∼ 550 ka
(Table 1). Ten records (18 %) show a moderate correlation
with the LR04 stack (r = 0.60 betweenr = 0.80). Three
records show a low correlation with the benthic stack with
r = 0.50 for ODP Site 882,r = 0.46 for MD03-2699, and
r = 0.36 for ODP Site 1168. The records from MD03-2699
and ODP Site 1168 are characterized by lowδ18O values in
the later part of MIS11. According to Voelker et al. (2007),
the benthicδ18O values of core MD03-2699 are strongly af-
fected by the Mediterranean outflow water (MOW) during
glacial and interglacial inceptions, making it difficult to es-
tablish their benthic-isotope-based age model we have used
in our study. The benthicδ18O record of ODP Site 1168
was tuned with the help of the original age model given in
Nürnberg et al. (2004) as their isotope curve does not show
the typical MIS11 pattern. The ODP Site 882 benthicδ18O
record has the lowest resolution of all records used, and the
tuning to the LR04 stack was guided by the age model given
in Haug (1995). When only the MIS11 interval (370–430 ka)
is considered, 52 records (91 %) show a correlation with the
LR04 stack higher thanr = 0.8. Four records (8 %) exhibit
correlation coefficients betweenr = 0.6 andr = 0.8, and one
record (ODP Site 1168) has a correlation of less than 0.6 (i.e.,
r = 0.19) (Table 1). To determine theδ18O records’ quality,
the records were divided into classes depending on their tem-
poral resolution. For records MD97-2142 and MD01-2443,
the mean temporal resolution based on two differentδ18O
records was calculated (Table 1). Eleven records (19.3 %)
have a temporal resolution higher than 1000 yr (Fig. 3a). A
total of 21 records (36.9 %) have a temporal resolution be-
tween 1000 and 3000 yr, and 16 records (28.0 %) have a
resolution between 3000 and 5000 yr. Nine of the records
(15.8 %) have a low temporal resolution of less than 5000 yr
(Fig. 3a). The mean temporal resolution of all records used
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is approximately 3000 yr. This is the value that was used as
the minimum estimate of age uncertainty in the age-model
sensitivity simulation.

3.2 Temporal resolution of SST proxy records

To evaluate the temporal resolution of SST records, the
records have been divided into the same classes as described
above for theδ18O records. For records having more than
one SST record, the mean temporal SST resolution was cal-
culated for this evaluation. A total of eight SST records
(14.0 %) have a temporal resolution of more than 1000 yr
(Fig. 3b), 24 records (43.0 %) a moderate temporal resolution
between 1000 and 3000 yr, and 14 records (24.6 %) a resolu-
tion between 3000 and 5000 yr. Eleven SST proxy records
(19.3 %) have a low resolution of less than 5000 yr (Fig. 3b).
The mean temporal resolution is 3127 yr, indicating that the
records should collectively be able to resolve orbital-scale
variability, but not millennial variability.

Depending on the specific temporal resolution of each
record, varying amounts of SST data points were available
for the comparison of the proxy with modeled SST anoma-
lies for the 390–420 ka time interval. From a total of 74
records used for this comparison, 26 records (35.1 %) pro-
vided only less than ten data points each for the total time
interval (Fig. 3c). For 36 records (48.6 %) 10–40 data points
per record were available, whereas nine records (12.1 %)
contained more than 40 but less than 130 data points per
record, and three records (4.1 %) provided more than 130
data points each.

3.3 Empirical orthogonal function analysis

EOF analysis (Fig. 4) of the 48 SST records spanning the
entire target time interval revealed the existence of a strong
commonality in the shape of the SST trends. The first three
EOFs together explained around three quarters of the vari-
ability in the data, irrespective of the combination of age-
model and SST-proxy uncertainty and record selection (Ta-
ble 3). Almost one half of the variability is explained by
the first EOF, which describes a temporal trend of a rapid
deglaciation, followed by a broad temperature optimum cen-
tered on 410 ka and a slow decrease of SST towards the end
of MIS11. The second EOF explains nearly 19 % of the total
variability and shows a delayed onset of the temperature op-
timum during MIS11 after 410 ka, followed by a prolonged
warm period lasting beyond 380 ka. The third EOF explains
around 8 % of the total variability and shows a cyclic pattern
with a period of about 30 kyr.

For the first EOF, 42 % of the records have significant
positive loadings> 0.75, 31 % of the records positive load-
ings between 0.5 and 0.75, and only four records (ODP Site
999, ODP Site 1168, RC11-210 and V22-174) show nega-
tive loadings (Fig. 5). The latter records reflect SST changes
in the tropical Atlantic and Pacific, as well as in southeast-

ern Australian coastal regions. In contrast, the loadings of
the second EOF are more diverse and show a geographical
pattern. Only three of the records show strong positive load-
ings> 0.75 to EOF2 and are primarily associated with SST
changes in the mid-latitude North Atlantic region (IODP Site
U1313) and the Mediterranean Sea (ODP Site 976) (Fig. 5).
Records with positive loadings to EOF2 between 0.5 and
0.75 are further observed in the mid-latitude North Atlantic
region (ODP Site 958), in the Caribbean Sea (V12-122), on
the western coast of South Africa (ODP Site 1082), north-
west of Australia (MD00-2361), and in the North Pacific
(ODP Site 882, RC11-210). Finally, high loadings of the
third EOF are limited to a few records, indicating that this
EOF (and all subsequent EOFs) tends to express patterns spe-
cific for individual sites, rather than highlighting commonal-
ities among the records.

Both the shape of the first two EOFs (Fig. 4) and the
amount of variance explained by them are remarkably ro-
bust to age-model and temperature uncertainty (Table 3). The
temperature uncertainty has a stronger influence on the EOF
robustness than the uncertainty of the age model. Compared
with a temperature uncertainty of 1◦C, a temperature uncer-
tainty of 4◦C reduces the variance explained by EOF1 from
49.0 to 35.9 % (Table 3). In contrast, an increase of age un-
certainty from 3 to 6 kyr reduces the amount of variance ex-
plained by the first EOF by less than 1 % (Table 3). Similarly,
a reduction of the number of records included in the analysis
has a relatively small influence on the variance that is ex-
plained by the EOFs, as long as the subsampling is limited to
more than 50 % of the total number of records (Table 3).

In contrast to the robustness of the first two EOFs, the third
EOF scores are sensitive both with respect to temperature un-
certainty and record selection (jackknifing). The cyclic sig-
nal of EOF3 loses significance already at temperature un-
certainty of 2◦C and with jackknifing at the level of with-
holding around 25 records at a time (Fig. 4). This behavior
is consistent with the EOF3 signal being associated with a
small number of records characterized by low amplitude of
the SST signal. We conclude that the third EOF, and by in-
ference all subsequent ones, does not express any general cli-
matic signals and is not interpreted further in this study.

The EOF analyses carried out separately for the 34 an-
nual and 14 summer SST records show similar general trends
for the first two components, but small temporal lags with
respect to the joint analysis (Fig. S1). The lags amount to
around 3–4 kyr, which coincides with the average temporal
resolution of the records. The loadings of individual records
in the separate analyses are largely similar to those in the
joint analysis (Fig. S2).

3.4 Comparison of proxy with modeled SST

The most striking pattern when comparing the proxy-based
SST anomalies with model results is the large difference
in their variance. Whilst proxy-based SST anomalies range
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Fig. 4. Results of an empirical orthogonal function (EOF) analysis of MIS11 SST records (Fig. 1, Table 1), including results of a sensitiv-
ity analysis with respect to age and temperature uncertainties. Re-calculations were made for age uncertainties of 3, 5 and 6 kyr, and for
temperature uncertainties of 1, 2 and 4◦C. To test for sensitivity of the EOF to record selection, jackknifing was applied and 5, 15, 25 and
35 samples were randomly excluded from the data set (age and temperature uncertainties were set to 5 kyr and 1◦C). All calculations were
made with 1000 iterations, and the confidence intervals are given for each analysis. For variances explained by the EOFs, see Table 3.

Table 3. Variances explained by the first three empirical orthogonal functions (EOFs) of the MIS11 SST records, including 5 and 95 %
confidence limits (see also Fig. 4). Re-calculations were made with varying age and temperature uncertainties and a random exclusion
of records (jackknifing, jack5 means that five records were excluded per replication). Control run refers to analysis of raw data without
consideration of uncertainties. EOF results presented in Fig. 8 and discussed in Sect. 4.1 are given in bold.

Parameter EOF1 5 % 95 % EOF2 5 % 95 % EOF3 5% 95%

control run 51.43 19.87 6.91
1000, 3 kyr, 1◦C 49.22 47.40 51.07 18.34 16.89 19.92 7.56 6.65 8.60
1000, 3 kyr, 2◦C 44.85 42.51 47.49 17.30 15.37 19.36 7.89 6.62 9.22
1000, 5 kyr, 1◦C 49.00 47.06 51.02 18.44 16.67 20.20 7.59 6.56 8.88
1000, 5 kyr, 2◦C 44.70 42.16 47.37 17.34 15.17 19.61 7.95 6.65 9.37
1000, 5 kyr, 4◦C 35.85 32.59 38.89 15.66 13.29 18.15 8.58 7.10 10.25
1000, 6 kyr, 1◦C 48.86 46.78 51.03 18.52 16.64 20.37 7.53 6.52 8.68
1000, 6 kyr, 2◦C 44.51 42.11 47.10 17.50 15.28 19.77 7.95 6.61 9.56
1000, 5 kyr, 1◦C, jack5 49.16 46.12 51.97 18.48 16.06 20.80 7.67 6.44 9.00
1000, 5 kyr, 1◦C, jack15 49.51 44.94 54.26 18.60 15.09 22.14 7.88 6.24 9.70
1000, 5 kyr, 1◦C, jack25 50.03 43.05 56.86 18.83 13.99 24.32 8.34 6.19 10.85
1000, 5 kyr, 1◦C, jack35 51.54 41.20 62.25 19.75 12.61 27.59 9.24 6.28 12.55

from 4◦C (up to 6◦C), the modeled SST anomalies range ir-
respective of season or time slice rarely from more than 1◦C.
This pattern is clearly seen in the comparison of the variances
of the anomalies in proxy data and model results (Table 4).
However, we determined whether or not the proxy pattern

for each time slice can be considered as a significant devia-
tion from “no change”, by calculating the error ranges of the
anomalies. In 55.6 % of all cases, zero is part of the confi-
dence interval of the anomaly, meaning that in these cases
the direction of the anomaly cannot be estimated accurately.
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Table 4.Correlation coefficients and Cohen’sκ values between the proxy and model SST anomalies for the three MIS11 time slices (Fig. 7),
as well as a comparison of variances in the proxy and model data (statistically significant values are given in italics).

Correlation Cohen´s Kappa Variance

Agreement Variance Variance
Temperature Correlation quality proxy model
anomaly r/ρ p value method κ (Altman, 1991) p value data data F value p value

390–400 ka annual 0.080 0.648 Spearman−0.145 poor 0.265 0.65 0.07 9.06 < 0.0001
390–400 ka summer 0.509 0.052 Spearman 0.312 fair 0.185 0.84 0.18 4.76 0.0061
390–400 ka winter 0.382 0.065 Spearman−0.013 poor 0.645 1.88 0.09 22.06 < 0.0001
400–410 ka annual −0.032 0.855 Spearman 0.005 slight 0.971 0.59 0.02 37.19 < 0.0001
400–410 ka summer 0.036 0.903 Spearman−0.235 poor 0.283 1.57 0.03 57.56 < 0.0001
400–410 ka winter 0.466 0.021 Spearman 0.204 fair 0.251 2.48 0.03 89.00 < 0.0001
410–420 ka annual −0.073 0.675 Pearson −0.201 poor 0.160 1.16 0.05 23.85 < 0.0001
410–420 ka summer 0.592 0.020 Pearson 0.500 moderate 0.025 0.38 0.11 3.38 0.0297
410–420 ka winter 0.094 0.661 Spearman−0.026 poor 0.883 1.81 0.08 23.19 < 0.0001

But notwithstanding the striking differences in the amount of
SST change at the studied sites between the proxy data and
the model, the direction of change and the regional patterns
of anomalies show a number of similarities.

We have tested the validity of our seasonal attribution of
the SST records with two randomization tests showing that
none of the resulting correlation coefficients was equal to or
larger than the one we originally observed when using the
complete data set (Fig. S4). When using a reduced data sub-
set of 30 records, only 1.4 % of the resulting correlation co-
efficients were equal to or higher than the one originally ob-
served. We can thus state that our observed correlation cannot
be significantly enhanced by disregarding the season assign-
ment of the proxy data. It is therefore reasonable to assume
that the season assignment is correct and does not bias our re-
sults. On this basis, the comparison between the proxy-based
and modeled SST anomalies in MIS11 (Fig. 6) shows a gen-
erally better agreement for the boreal summer than for the
boreal winter. For the boreal summer, a robust trend to colder
(390–400 ka) and warmer temperatures (400–410 and 410–
420 ka) can be observed for the northernmost Atlantic region
(Fig. 6). Modeled positive SST anomalies in the (sub)tropics
during the 390–400 ka time interval only partly agree with
the SST anomalies recorded in the sediments, while negative
SST anomalies modeled for the Southern Ocean region are in
better accordance with the proxy data for this time slice. The
general temperature increase simulated for the 400–410 ka
time slice during the boreal summer season is also reflected
by the positive SST anomalies in the proxy records except
for one record in the tropical Pacific and the northernmost
Atlantic. A modeled temperature increase in the Northern
Hemisphere accompanied by a temperature decrease in the
(sub)tropics can also be observed in the proxy data for the
410–420 ka interval, especially for the Atlantic Ocean and
the South China Sea. For the tropical Pacific, the Caribbean
Sea, and for two South Atlantic sites, the proxy data show
opposite trends to the model data (Fig. 6).

The modeled negative SST anomalies in the Southern
Hemisphere for the boreal winter season for the 390–400 ka
time slice generally agree well with the proxy data, while
model and proxy data for the (sub)tropical regions as well
as the Northern Hemisphere partly show opposite trends.
The simulated SST increase in the Northern Hemisphere and
the (sub)tropics accompanied by negative anomalies in the
Southern Hemisphere during the 400 to 410 ka time interval
can also be observed from the proxy data for the Atlantic
and Southern Ocean regions, while the observations disagree
with the model data for the tropical Pacific (Fig. 6). Modeled
positive SST anomalies in the Southern Hemisphere and neg-
ative temperature anomalies in the (sub)tropics are in agree-
ment with most of the proxy records of the 410–420 ka inter-
val, too, while, particularly in the North Atlantic, model and
proxy data show opposite trends.

Despite the apparently good qualitative agreement be-
tween model and proxy data (Fig. 6), a quantitative compari-
son shows a different picture (Fig. 7, Table 4). A statistically
significant correlation between proxy and model anomalies
can only be observed for the boreal winter of the 400–410 ka
time interval and for the summer of the 410–420 ka interval,
with ρ = 0.47 (p = 0.021) andr = 0.59 (p = 0.020), respec-
tively. For all other time slices, the seasonal and annual SST
anomalies show low correlations between proxy and mod-
eled data (Table 4, Fig. 7). Cohen’sκ, which was used to test
whether or not the proxy and modeled data are qualitatively
in agreement, shows a moderate and significant (p = 0.025)
agreement for boreal summer during the 410–420 ka inter-
val. Fair agreement is given for the boreal summer during the
390–400 ka and for the boreal winter during the 400–410 ka
time intervals, respectively, whereby these agreements are
not statistically significant, withp values ranging between
0.185 and 0.251 (Table 4).
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Fig. 5. Spatial distribution of the mean loadings of the first three
EOFs, based on 1000 iterations using an age and a temperature un-
certainty of 5 kyr and 1◦C. Positive loadings are given in red, neg-
ative loadings in blue. Variance explained by each component is
given in brackets. Almost all records show high positive loadings
on the first EOF, while high positive loadings on the second EOF
are restricted to the North Atlantic Ocean and the Mediterranean
Sea, and south of Australia.

4 Discussion

4.1 Global and regional climate trends in the proxy SST
records

Under the limitation of the uncertainty in the alignment of
the benthic oxygen isotope stack with insolation as carried
out by Lisiecki and Raymo (2005), it is possible to explore
the relationship between insolation forcing and the global
SST pattern during MIS11 as revealed by the EOF1 scores
(Fig. 8a). Such a comparison is justified, because the SST
records at each site are co-registered with the stable oxygen

isotope variations used to align the records temporarily but
are in all cases entirely independent of these. This compar-
ison reveals a rapid global temperature rise during Termi-
nation V occurring between 430 and 425 kyr. The highest
global temperatures during MIS11 were reached at around
411 kyr when the high-latitude summer insolation was at its
minimum. The SST cooling trend into the glacial inception
started at around 405 kyr, corresponding to the onset of ice-
sheet growth as indicated by benthic isotopes and the Red
Sea sea-level curve (Fig. 8d).

Across MIS11, the first EOF1 follows a consistent glacial–
interglacial pattern with cold SSTs during MIS12 (> 430 ka)
and MIS10 (< 370 ka), and a relatively long duration of
warmer SSTs from 416 to 405 kyr. A similar trend is re-
flected in the Antarctic temperature change based on the deu-
terium record of the EPICA Dome C ice core (Jouzel et al.,
2007) (Figs. 8b and 9b). However, the position of the inter-
glacial temperature peak is offset with a temperature peak
in the Antarctic record lagging the EOF1 signal as well as
the mean global temperature peak calculated from all records
(not shown here) by∼ 4 kyr (Figs. 8b and 10). The EOF1
signal is similar to mean relative SST changes in the South
Atlantic and the Southern Ocean (Fig. 8b), while North At-
lantic records with high loadings to EOF1 are characterized
by a slower temperature decrease during the late MIS11 pe-
riod – a pattern more similar to the CO2 record measured
in the Dome C Antarctic ice core (Siegenthaler et al., 2005)
(Figs. 8c and 9a). Compared to theδ18O sea-water record of
ODP Site 1123 as a proxy for ice volume (Elderfield et al.,
2012), it seems that the deglacial SST rise indicated by EOF1
preceded the reduction of the global ice volume by∼ 5 kyr
(Fig. 8d, e). This pattern remains even when the sea level de-
velopment during MIS11 is approximated by the Lisiecki and
Raymo (2005) stack or by the Red Sea stable isotope record
by Rohling et al. (2009) (Figs. 8d, 9c and d), indicating a
faster reaction of the surface ocean to insolation and green-
house gas forcing than that of the slowly melting ice sheets.

The temporal resolution of our study and the level of tem-
poral uncertainty make it difficult to address the phasing
of different proxies during MIS11 at millennial timescales,
but we note that the global SST trend indicated by EOF1
scores does not precede CO2 (Fig. 8c). Further, the ob-
served lag between the global SST peak and the tempera-
ture peak over Antarctica of around 4 kyr is robust to dat-
ing uncertainties (Figs. 8b, 10). This would indicate that dur-
ing the interglacial, temperature over Antarctica was not as
closely coupled to the global mean as during the deglacia-
tion, perhaps reflecting more strongly the antiphased South-
ern Hemisphere insolation pattern (Laepple et al., 2011).

The second EOF scores in our analysis follow a trend that
differs from the global pattern and indicate a later estab-
lishment of a relative temperature maximum and a longer-
lasting period of warmer temperatures during late MIS11 and
into MIS10 (Fig. 8e and f). This regional trend is primar-
ily reflected in the SST records of the mid-latitude North
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Fig. 6. A comparison of the boreal summer and winter sea surface temperature anomalies of proxy records with CCSM3 climate model
results for 390–400, 400–410 and 410–420 ka time slices. Color and size scales indicate the magnitude of temperature anomalies relative to
the mean SST of the three time slices.

Atlantic, the Mediterranean Sea as well as in one record
south of Australia (Fig. 5). A similar trend, with delayed
onset of interglacial conditions after Termination V and a
longer-lasting interglacial optimum, has been recently re-
ported also from the eastern Mediterranean (Maiorano et al.,
2013). The apparent later onset of MIS11 optimum and the
longer duration of interglacial warmth have been also noted
by the authors of the individual records included in our com-
pilation, particularly for records from the North Atlantic re-
gion. These authors hypothesized that the persistence of the
northern ice sheets throughout MIS11 may have led to a
dominant negative mode of the North Atlantic Oscillation
(NAO) (Kandiano et al., 2012) whilst the associated sus-
tained meltwater input in the (sub-)polar regions may have
resulted in a less stable Atlantic meridional overturning cir-
culation (AMOC; Voelker et al., 2010). In either case, these
phenomena would lead to a reduced ocean heat transfer into
the North Atlantic, causing a delayed optimum in the SST
trends. Indeed, Dickson et al. (2009) conclude that a stronger
AMOC during MIS11 was first established at 415 ka. Simi-
larly, meanδ13C of benthic Foraminifera from water depths

between 1100 and 2300 m in the North Atlantic that can be
used as a proxy for NADW production (Lisiecki et al., 2008)
shows increasing values from 425 to 405 ka, where the heav-
iest values were reached before only slightly decreasing until
the end of MIS11 (Fig. 8f). This trend, which is indicative
for enhanced NADW production between 410 and 400 ka,
is quite similar to our EOF2 scores as well as to the mean
relative temperature anomaly trends found in the records
with high EOF2 loadings (Fig. 8e and f). The persistence
of longer-lasting warmer temperatures in the terrestrial high
northern latitudes in the late MIS11 and into MIS10 has also
been explained by a weaker Siberian High pressure system
during times of insolation minima due to lower ice and snow
accumulation rates, leading to weakened East Asian winter
monsoon (EAWM) as reflected by the GT32 grain size dis-
tribution in Chinese loess sequences (Hao et al., 2012) show-
ing a similar pattern to our EOF2 signal (Fig. 8f). However,
other terrestrial records from lakes Baikal and El’gygytgyn
(Propopenko et al., 2010; D’Anjou et al., 2013) do not show
a longer-lasting warm phase during MIS11 in the northern
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Fig. 7. Correlations between the proxy SST anomalies (annual, boreal summer and boreal winter) (in kelvin) and the model SST anomalies
(in kelvin) for 390–400, 400–410 and 410–420 ka time slices. Given are the Pearson (r) and Spearman (ρ) correlations andp values (Table 4).
Higher positive correlations between the proxy and model data can be observed for the boreal summer seasons of the 390–400 and 410–420 ka
time slices and for the boreal winter season of the 400–410 ka time slice. Note differentx andy axes scaling.

higher latitudes as observed by Hao et al. (2012) and our
study.

4.2 Comparison of the climate variability between
proxy and model SST

The observation of a much lower variance in modeled tem-
perature trends when compared to paleo-data (Table 4)
has been found in other studies where marine and terres-
trial proxy have been compared with simulated temperature
trends for the Holocene period (Brewer et al., 2007; Zhang
et al., 2010; Sundqvist et al., 2010; O’ishi and Abe-Ouchi,
2011; Lohmann et al., 2013). In principle, such disagree-
ment might be caused by an underestimation of temperature
changes in climate models, as also suggested by, for exam-
ple, Brewer et al. (2007), O’ishi and Abe-Ouchi (2011) and

Lohmann et al. (2013), by an overestimated proxy SST vari-
ability, or a combination of both. Underestimation of climate
variability in model simulations may be caused by shortcom-
ings in the model physics (e.g., subgrid-scale parameteriza-
tions associated with clouds in the atmosphere or mixing in
the ocean) and/or missing climate components (e.g., conti-
nental ice sheets) resulting in a lack of potentially impor-
tant feedback mechanisms. At single sites, undersimulated
SST variance may also be caused by too coarse grid resolu-
tion, such that, for example, shifts in oceanic fronts or up-
welling zones are not resolved. Higher variance in the proxy
data may result from noise and calibration uncertainties, or
from uncertainties in seasonal and/or vertical attribution in
the proxy records, as also suggested by Brewer et al. (2007)
and Sundqvist et al. (2010) as well as from a different tempo-
ral SST resolution. The latter phenomenon, however, should
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Fig. 8. Scores of the first EOF with their confidence intervals versus(A) orbital parameter (June insolation at 60◦ N and obliquity (Laskar
et al., 2004)),(B) relative temperature changes in the South Atlantic and Southern Ocean and Antarctic temperature changes recorded in the
Dome C ice core during MIS11 (Jouzel et al., 2007; [a]) (thin pink line: original data; thick pink line: smoothed curve),(C) mean relative
temperature change in the North Atlantic records with high loadings to the first EOF and CO2 concentration recorded in the Dome C ice core
from the Antarctic (Siegenthaler et al., 2005; [b]), and(D) relative sea-level changes in the Red Sea (Rohling et al., 2009; [c]) and the LR04
benthic stack (Lisiecki and Raymo, 2005; [l]). Scores of the second EOF mean relative temperature changes in records with high positive
loadings (> 0.75) on the second EOF versus(E) δ18O of sea water as proxy for ice volume (Elderfield et al., 2012; [d]), and(F) meanδ13C
values in the North Atlantic as a proxy for North Atlantic deep water (NADW) strength and the East Asian winter monsoon signal as reflected
by the GT32 grain size (content of> 32 µm particles) in loess sequences (Hao et al. 2012; [m]; note inverse scale). For the mean ofδ13C
North Atlantic, records between 1100 and 2300 m water depth were selected according to Lisiecki et al. (2008). Theδ13C records used here
are from Shackleton and Hall (1984) [e], Oppo et al. (1998) [f], Venz et al. (1999) [g], Raymo et al. (1998) [h], McIntyre et al. (1999) [i],
Kleiven et al. (2003) [j], and Raymo et al. (2004) [k]. The EDC ages of the records from the Dome C ice core in(B) and(C) were converted
into LR04 ages (Lisiecki and Raymo, 2005; [l]) according to Parrenin et al. (2007). (*) Records with high EOF2 loadings are from IODP
Site U1313 & ODP Site 958 (North Atlantic), ODP Site 975 & ODP Site 976 (Mediterranean Sea) and ODP Site 1168 (south of Australia).

lead to a lowering of proxy variance with record resolution
(assuming that the records are all subsampling a signal with
similar spectral properties).

In order to explore the potential causes of variance in
the SST reconstructions by proxies, we plot SST variance
against sampling resolution for all records using the proxy–
model comparison (Fig. 11). The majority (eight) of the SST
records with higher variability (Fig. 11) were reconstructed
with the modern analog technique (MAT) and other trans-
fer functions applied on microfossils such as radiolarians,
diatoms and Foraminifera. The main assumptions when us-
ing microfossils for past SST estimates via transfer functions
are that (1) the microfossil composition that is used to cre-
ate a transfer function is systematically related to SST and

(2) the ecology of the microfossil assemblages has not sig-
nificantly changed since the time of interest. The presence of
a variable SST during the MIS11 indicated by these methods
thus could reflect the effects of nuisance parameters on the
reconstructed SST or large shifts in the ecology of the mi-
crofossils. The latter seems unlikely on the timescale of one
glacial cycle (although changes in seasonality and vertical
habitats could have occurred and affected geochemical prox-
ies), but the former could indeed be significant, especially
where the fossil assemblages differed from the calibration
data set, resulting in the detection of very different modern
analogs with small changes in the assemblages. On the other
hand, regression-based transfer function methods, such as the
MAT and the Imbrie–Kipp method, are unlikely to yield SST
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Fig. 9. Cross plots showing the correlation between EOF1 scores
and(A) atmospheric CO2 concentration (Siegenthaler et al., 2005),
(B) Antarctic temperature change (Jouzel et al., 2007),(C) Red Sea
relative sea level change (Rohling et al., 2009) and(D) the benthic
LR04 stack (Lisiecki and Raymo, 2005). EDC ages of the Antarc-
tic temperature record were converted into LR04 ages according to
Parrenin et al. (2007).

reconstructions with variance inflating the level of variance
in the assemblage data. In our case, SST records based on
MAT yield, for records with similar resolution, similar vari-
ance (Fig. 11), indicating that the variance of the reconstruc-
tions is unlikely to have been inflated due to the presence of
no-analog faunas. In individual cases, the high variance in
SST reconstructions by proxies can be attributed to nuisance
variables. For example, Becquey and Gersonde (2002) con-
cluded that carbonate dissolution may result in an over- or
underestimation of SSTs when using Foraminifera with vary-
ing dissolution resistance for the application of transfer func-
tions. These authors further conclude that their summer SSTs
estimated with MAT for core PS2489 (used in this study) are
overestimated by 6–7◦C for a short interval within MIS11.
Whether or not the same can be said for all records in this
study remains unclear.

Despite the large differences in variance and considering
all the potential sources of uncertainty in the proxy-based
SST values, it is remarkable that in several cases not only a
visual agreement between the direction of SST change im-
plied by data and models is similar, but also a positive re-
lationship between the values of SST anomalies from both
approaches can be observed (Figs. 6 and 7). Whereas it is
likely that many of the proxies used could produce SST re-
constructions systematically shifted from their a priori sea-
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Fig. 10. Sea surface temperature optima during MIS11 calculated
with various EOF analyses based on age and temperature uncer-
tainties of 3–6 ka and 1–2◦C, respectively, and jackknifing versus
temperature optimum observed in Antarctica (Jouzel et al., 2007)
showing a lag of∼ 4 kyr between the SST optimum calculated with
EOF1 and the Antarctic temperature optimum during MIS11. Most
EOF runs (74–89 %) given here as numbers (n) show an earlier SST
optimum than that recorded in Antarctica. EDC ages of the Antarc-
tic temperature record were converted into LR04 ages according to
Parrenin et al. (2007).

sonal or vertical attribution, the calculation of SST anomalies
between the investigated time slices should largely reduce
this problem, as long as the shifts in species ecology causing
such misattribution remain temporarily stable. Apparently,
especially for the boreal summer season reconstructions, the
signal in the proxy-based SST anomalies resonated with
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records particularly estimated with the modern analog technique
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processes captured by the CCSM3 model runs. Since these
model runs differ mainly by orbital parameters (with green-
house gas concentrations being largely similar, Table 2), it
appears that orbital forcing has left a detectable signature in
the global SST pattern during MIS11, despite its unusually
low magnitude.

5 Conclusions

Using a compilation of SST records from 57 sites, aligned
to a common timescale through oxygen isotope stratigraphy,
and a series of CCSM3 model runs forced by greenhouse
gas concentrations and orbital parameters, we investigated
global patterns of MIS11 SST and their correlation with forc-
ing mechanisms.

– An empirical orthogonal function analysis of 48 SST
records revealed the presence of two main SST trends,
which collectively explained nearly three quarters of
the variation in the data set. We have shown that the
results of this analysis are robust against sample selec-
tion and errors in the age model, but are more sensitive
to SST uncertainty.

– The main SST trend describes the global glacial–
interglacial pattern, showing rapid deglaciation fol-
lowed by a broad climatic optimum culminating
around 410 ka. The SST development during MIS11
optimum is not in phase with Antarctic temperature
and CO2. This lag is the dominant signal in the second
EOF. We speculate that this phase difference, which is
most strongly manifested in the North Atlantic, may be
explained by a later establishment of a stable AMOC
in MIS11.

– The second EOF further differs from the global SST
trend by a protracted warmer period during MIS11,

lasting into MIS10. This regional trend may reflect not
only a later onset but also a longer duration of a stable
North Atlantic AMOC during MIS11.

– The comparison of the CCSM3 model with the proxy
data shows that similar temperature trends can be
found especially for the summer seasons. It further
shows that the SST variability found in the proxy data
is significantly higher than in the model. This is more
likely a consequence of an underestimation of SST
changes in climate models. Alternatively, SST recon-
structions for MIS11 would have to be subject to per-
vasive influence of nuisance parameters, which vary
at millennial timescales. The general agreement be-
tween proxy-derived and modeled SST anomalies in-
dicates the MIS11 climate was responding to insola-
tion forcing, despite the low orbital eccentricity.

Supplementary material related to this article is
available online athttp://www.clim-past.net/9/2231/2013/
cp-9-2231-2013-supplement.zip.
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